Фізика

Навчання фізики (7 – 9 класи) та фізики і астрономії (10 – 11 класи) у закладах загальної середньої освіти в 2021/2022 навчальному році здійснюватиметься за навчальними програмами, затвердженими Міністерством освіти та науки України:

«Фізика. 7 – 9 класи», навчальна програма для загальноосвітніх навчальних закладів, затверджена наказом Міністерства освіти і науки України від 07.06.2017 № 804 (https://bit.ly/3h84aEX).

«Фізика. 8 – 9 класи», навчальна програма для загальноосвітніх навчальних закладів з поглибленим вивченням фізики, затверджена наказом Міністерства освіти і науки України від 17.07.2013 № 983 (https://bit.ly/3w33qoM).

У 10 – 11 класах вивчається базовий предмет «Фізика і астрономія». Вивчення цього предмета може здійснюватись за програмами, затвердженими наказом Міністерства освіти і науки України від 24.11.2017 № 1539, розміщеними на офіційному сайті МОН України:

«Фізика і астрономія. 10 – 11 класи» (рівень стандарту та профільний рівень), навчальна програма для закладів загальної середньої освіти (авт. кол. під кер. Ляшенка О. І.) (https://bit.ly/3warfer).

«Фізика, 10 – 11 класи» (рівень стандарту та профільний рівень), навчальна програма для загальноосвітніх навчальних закладів (авт. кол. під кер. Локтєва В. М.) (https://bit.ly/2UKCkWn).

«Астрономія» (рівень стандарту та профільний рівень), навчальна програма для загальноосвітніх навчальних закладів (авт. кол. під керівництвом Яцківа Я. Я.) (https://bit.ly/3qBBEi5)

Вибір навчальних програм з фізики та астрономії у старшій школі здійснюється закладом освіти, затверджується рішенням педагогічної ради навчального закладу й відображається в його освітній програмі.

За обранням програми «Фізика, 10 – 11 класи» (авт. кол. під кер. Локтєва В. М.) навчання астрономії здійснюється за програмою «Астрономія» (авт. кол. під кер. Яцківа Я. Я.). У такому разі у навчальному плані й відповідно у класному журналі зазначаються два предмети (окремо фізика і окремо астрономія); у додатку до свідоцтва про здобуття повної загальної середньої освіти виставляються оцінки з двох предметів.

При виборі закладом загальної середньої освіти програми «Фізика і астрономія. 10 – 11 класи» (авт. кол. під кер. Ляшенка О. І.) у навчальному плані зазначається один навчальний предмет й відповідно у додатку до свідоцтва про здобуття повної загальної середньої освіти виставляється оцінка з предмета «Фізика і астрономія». Програма цього навчального предмета поєднує фізичний і астрономічний компоненти, не втрачаючи своєрідності кожного з цих складників, оскільки в старшій школі ці компоненти освітньої галузі «Природознавство» мають споріднений предмет навчання, методи дослідження і, як правило, спільний внесок у формування наукової картини світу. Враховуючи це, фізичний та астрономічний складники за вибором учителя можуть викладатися інтегровано або як відносно самостійні модулі. При цьому облік навчальних досягнень здобувачів освіти у класному журналі може здійснюватись окремо «Фізика і астрономія (фізичний складник)» та для «Фізика і астрономія (астрономічний складник)», семестрова/річна оцінка виставляється на сторінці «Фізика і астрономія (фізичний складник)» з урахуванням тематичних оцінок з астрономії. Якщо астрономічний та фізичний складники вивчаються інтегровано, то у класному журналі облік навчальних досягнень здобувачів освіти ведеться на одній сторінці з предмета «Фізика і астрономія», в якому є теми з астрономічним та фізичним змістом. Змістові питання з астрономії можуть вивчатися упродовж навчального року або як окремий розділ.

Державна підсумкова атестація у формі зовнішнього незалежного оцінювання здійснюється з предмета «Фізика» незалежно від того, за якими навчальними програмами навчались учні. Наказом Міністерства освіти і науки України від 26.06.2018 № 696 затверджено програми, за якими проводиться зовнішнє незалежне оцінювання результатів навчання, здобутих на основі повної загальної середньої освіти (https://bit.ly/3jwmyc7).

Звертаємо увагу, що навчальні програми не містять фіксованого розподілу годин між розділами і темами курсу. У програмах наводиться лише тижнева і загальна кількість годин на вивчення предмета. Розподіл кількості годин на вивчення окремих розділів/тем визначається учителем. За необхідності й виходячи з наявних умов навчально-методичного забезпечення, учитель має право самостійно визначати порядок вивчення тем та місце проведення лабораторних практикумів і практикумів з розв’язування задач – у кінці розділу або під час його вивчення

З метою реалізації компетентнісного підходу в програмах з фізики та астрономії базової і старшої школи визначено ключові компетентості, які формуються змістом програм, та зазначено результати навчання за складниками знаннєвим, діяльнісним, ціннісним. Також в навчальних програмах виокремлено наскрізні змістові лінії: «Екологічна безпека та сталий розвиток», «Громадянська відповідальність», «Здоров’я і безпека», «Підприємливість та фінансова грамотність».

Наскрізні змістові лінії є засобом інтеграції навчального змісту, корелюються з ключовими компетентностями, опанування яких забезпечує формування ціннісних і світоглядних орієнтацій здобувачів освіти, що визначають їх поведінку в життєвих ситуаціях. Реалізація наскрізних змістових ліній полягає у відповідному трактуванні навчального змісту тем і не передбачає будь-якого його розширення чи поглиблення.

Навчальними програмами з фізики та астрономії визначено перелік демонстраційних експериментів, спостережень та лабораторних робіт, необхідних для забезпечення реалізації Державного стандарту базової і повної загальної середньої освіти. Водночас учитель, зважаючи на матеріальну базу фізичного кабінету закладу освіти, може замінювати окремі роботи рівноцінними, використовувати різні варіанти проведення їх (у тому числі віртуальну демонстрацію фізичного досліду), доповнювати цей перелік іншими дослідами або короткочасними експериментальними завданнями, об’єднувати кілька робіт в одну залежно від обраного плану вивчення певної теми. Окремі лабораторні роботи можуть виконуватись учнями або як домашні завдання, або як учнівські навчальні проєкти, або з використанням цифрових лабораторій (цифрових вимірювальних комплексів), комп’ютерних моделей, віртуальних симуляцій і віртуальної фізичної лабораторії. Разом з тим, модельний віртуальний експеримент не може повною мірою замінити лабораторні роботи, які виконуються з використанням реального обладнання.

Навчальний фізичний експеримент є важливим засобом формування предметної та ключових компетентностей під час вивчення фізики. Завдяки навчальному експерименту учні оволодівають досвідом практичної діяльності людства в галузі здобуття фактів та їхнього попереднього узагальнення на рівні емпіричних уявлень, понять і законів. Експеримент виконує функцію методу навчального пізнання, завдяки якому у свідомості учнів утворюються нові зв’язки та відношення, формуються суб’єктивно нові особистісні знання. Експеримент також дидактично забезпечує процесуальну складову навчання фізики й формує в учнів експериментальні вміння й дослідницькі навички

В умовах карантину та самоізоляції через пандемію гострої респіраторної хвороби COVID-19, спричиненої коронавірусом SARS-CoV-2, особливо актуальним стало використання технологій дистанційного/мобільного навчання.

Cучасні смартфони містять велику кількість датчиків й можуть стати своєрідною «мобільною цифровою лабораторією». За допомогою особистого смартфону здобувачі освіти можуть вимірювати різні параметри навколишнього середовища й проводити аналіз та статистичну обробку отриманих результатів за допомогою спеціальних додатків. На сайті Віртуального STEM-центру Малої академії наук України (https://stemua.science/) розміщено методики використання смартфонів для проведення експериментальних досліджень. Крім того, ресурс містить у розрізі розділів фізики та астрономії розробки лабораторних робіт з використанням цифрових лабораторій, готові моделі для друку фізичних приладів на 3D принтері. Для закладів загальної середньої освіти, які ще не мають сучасного обладнання для проведення досліджень, зроблено відеозаписи досліджень та викладено файли для завантаження результатів дослідження, що фіксуються за допомогою датчиків.

Включення в освітній процес смартфонів забезпечує формування у здобувачів освіти ціннісного ставлення до смартфону, як засобу для дослідження навколишнього середовища. Проте дослідження, проведені за допомогою смартфонів, хоч й містять кількісні результати вимірювання фізичних величин, можуть аналізуватися лише з метою отримання якісних висновків, оскільки через відсутність метрологічної повірки датчиків кількісні результати вимірювань різними смартфонами можуть різнитися й містять інструментальну похибку вимірювання, яку важко врахувати.

Ефективним засобом, що забезпечує формування предметної та ключових компетентностей учнів, є розв’язування фізичних задач. Розв’язуючи компетентнісно орієнтовані фізичні задачі, – від найпростіших, які потребують елементарних пізнавальних зусиль учня, до дослідницьких, розв’язання яких вимагає значних інтелектуальних зусиль та багато часу, учні розвиватимуть вміння застосовувати теоретичні знання на практиці. Тому таку форму організації навчальних занять доцільно здійснювати незалежно від обраної навчальної програми як в основній, так і в старшій школі.

Дидактичні вимоги до змісту та способів розв’язування компетентнісно орієнтованої системи задач полягають в тому, що:

завдання мають бути тісно пов’язані зі змістом навчального матеріалу курсу фізики, доповнювати його конкретними прикладами та відомостями, спрямованими на ознайомлення учнів з об’єктивними науковими фактами, методами пізнання природи;

потрібно здійснювати дослідження конкретних об’єктів і явищ, дотримуватися однозначності вхідних і кінцевих величин, запитань та відповідей;

інформація, що міститься в умові задачі, а також процес її розв’язування мають ґрунтуватися на засвоєних раніше знаннях і відповідати розумовим здібностям учнів певної вікової групи;

кількість компетентнісно орієнтованих завдань має бути достатньою для організації самостійної роботи школярів і охоплювати основні розділи курсу фізики, під час їх добору мають ураховуватися індивідуальні особливості учнів, матеріальна база фізичного кабінету тощо;

у процесі складання компетентнісно орієнтованих фізичних завдань мають розкриватися зв’язки в системах «природа – людина», «природа – техніка», «людина – техніка»;

система задач має містити завдання, спрямовані на набуття учнями вмінь моделювати різноманітні виробничі й життєві ситуації;

розв’язування різними методами із застосуванням математичного апарату і прийомів науково-дослідницької роботи компетентнісно орієнтованих завдань, має сприяти формуванню обчислювальних, експериментальних, творчих та дослідницьких компетентностей.

Сучасна людина існує в умовах розвитку високих комп’ютерних технологій, упровадження високошвидкісного Інтернету в усі сфери життя. Людину практично з народження оточує перенасичене різноманітною інформацією освітнє поле, орієнтуватися в якому стає дедалі складніше. Як ніколи важливою стає проблема виховання такої особистості, яка не несе з собою по життю непідйомний багаж енциклопедичних знань, а має таку важливу якість, як критичне мислення, що дає змогу знаходити крихти істини у потоці інформації з різних джерел. Людина потребує критичного мислення, яке допомагає їй жити серед людей, соціалізуватися.

У цьому контексті безперечною вимогою часу є формування у здобувачів освіти медіаграмотності. Зробити уроки більш цікавими для учнів, розвивати в них не лише предметні компетентності, а й медіаграмотність допоможе посібник «Медіаграмотність на заняттях з фізики». Навчальне видання / Е. М. Якубовська / За редакцією О. В. Волошенюк, А. М. Григор’єва. – Київ: Академія української преси; Центр Вільної Преси, 2020. –
53 с. Посібник є першим виданням в Україні, що розкриває питання освіти з медіаграмотності на заняттях з фізики. У книжці наведено короткі теоретичні відомості про різні аспекти медіаграмотності, приділено увагу питанням методики впровадження навчання з медіаграмотності та розміщено численні ідеї завдань, що можуть бути використані під час занять з фізики. Завантажити можна за посиланням: https://www.aup.com.ua/mediagramotnist-na-zanyattyakh-z-fizi/ .

Навчальна та методична література для вивчення предметів «Фізика», «Астрономія», «Фізика і астрономія» наведена у Переліку навчальних програм, підручників та навчально-методичних посібників, рекомендованих Міністерством освіти і науки України на 2021/2022 навчальний рік, що розміщені на вебсайтах МОН, ДНУ «Інститут модернізації змісту освіти».

 

 

Методичні рекомендації щодо викладання фізики  в 2017 - 2018 н.р.

         У 2017-2018 навчальному році в основній школі завершується перехід на навчальні програми, розроблені відповідно до Державного стандарту базової і повної загальної середньої освіти, затвердженого Постановою Кабінету Міністрів України від 23. 11. 2011 р. № 1392  і затверджені наказом Міністерства освіти і науки України № 664 від 06.06.2012 року зі  змінами, затвердженими наказом Міністерства  освіти і науки України від 29.05.2015 № 585. У зв’язку з прийняттям Концепції реалізації державної політики у сфері реформування загальної середньої освіти «Нова українська школа» на період до 2029 року в поточному році   навчальні програми для 5-9 класів загальноосвітніх навчальних закладів були оновлені.

Таким чином, у 2017-2018 навчальному році у 7-9 класах загальноосвітніх навчальних закладів навчання фізики здійснюватиметься за оновленою  навчальною програмою, затвердженою наказом
МОН України від 07.06.2017 р. № 804, яка розміщена на офіційному веб-сайті Міністерства (http://mon.gov.ua/activity/education/zagalna-serednya/navchalni-programi-5-9-klas-2017.html).

У 8-9 класах з  поглибленим вивченням фізики навчання здійснюватиметься за навчальною програмою, затвердженою наказом МОН України від 17.07.2015 № 983, розміщеною на сайті Міністерства (http://mon.gov.ua/content/%D0%9E%D1%81%D0%B2%D1%96%D1%82%D0%B0/fizika(1).pdf).

У старшій школі (10-11 класи) навчання фізики здійснюватиметься відповідно до обраного профілю навчання: на рiвнi стандарту, академiчному або профільному рівні за навчальними програмами для загальноосвітніх навчальних закладів, затвердженими наказом Міністерства освіти і науки України №1021від 28.10.2010 р. зі  змінами, затвердженими наказом Міністерства  освіти і науки України від 14.07. 2016 р. №  826 і розміщеними на офіційному веб-сайті Міністерства  (http://mon.gov.ua/activity/education/zagalna-serednya/navchalni-programy.html).

Звертаємо увагу, що у 2016 році до навчальних програм з фізики для 10-11 класів внесено зміни, викликані потребою розвантаження навчального матеріалу.

У програмах академічного і профільного рівнів питання, що наведено в дужках, вилучаються зі  змісту.

Питання релятивістської механіки, які вивчалися окремим розділом на рівні стандарту, перенесені частково в розділи   «Динаміка» (у частині змісту: основні положення спеціальної теорії відносності; у частині державних вимог: наводить приклади, які підтверджують справедливість спеціальної теорії відносності; формулює основні положення спеціальної теорії відносності; обґрунтовує історичний характер виникнення й становлення теорії відносності; пояснює значення теорії відносності в сучасній науці й техніці; робить висновки про зв'язок фізичних характеристик тіл і явищ із властивостями простору й часу)  та «Атомна і ядерна фізика» (у частині змісту: взаємозв'язок маси та енергії; у частині державних вимог: може розв’язувати задачі, застосовуючи формулу взаємозв’язку маси та енергії).

Відповідно до Типових навчальних планів загальноосвітніх навчальних закладів II ступеня, затверджених наказом Міністерства освіти і науки України від 03.04.2012 р. № 409 (в редакції наказу Міністерства освіти і науки України від 29.05.2014 р. № 664), у всіх загальноосвітніх навчальних закладах (додатки 1 – 3, 5 – 8, 10-13) фізика вивчається:

 у 7 класі - 2 години на тиждень,

 у 8 класі - 2 години на тиждень,

 у 9 класі – 3 години на тиждень.

Виключення складають спеціалізовані школи з навчанням мовами національних меншин  і поглибленим вивченням іноземних мов (додаток 4) і білінгвальні класи у закладах з українською мовою навчання (додаток 9), в яких у 9 класі фізика вивчається 2,5 години на тиждень.

У вечірніх (змінних) загальноосвітніх школах з очною формою навчання (додатки 14-15) фізика вивчається у 7 класах – 1годину на тиждень, а у 8 і 9 класах – 1,5 години на тиждень. У вечірніх  (змінних) загальноосвітніх школах  із заочною формою навчання (додатки 16-17) у 7 – 9 класах фізика вивчається  1годину на тиждень.

Відповідно до Типових навчальних планів загальноосвітніх навчальних закладів IIІ ступеня, затверджених наказом Міністерства освіти і науки України від 27.08.2010 р. № 834 (із змінами, затвердженими наказом Міністерства освіти і науки України від 29.05.2014 № 657),   фізика у 10 -11 класах вивчається:

на рівні стандарту – 2 години на тиждень;

на академічному рівні – 3 години на тиждень;

на профільному рівні –  6 годин на тиждень.

         Шкільний курс фізики має двоконцентричну структуру, що узгоджено із структурою  загальноосвітньої школи. У 7, 8, 9 класах вивчається логічно завершений базовий курс фізики, який закладає основи фізичного знання на явищному (феноменологічному) рівні. У 10, 11 класах навчання фізики здійснюється відповідно до обраного профiлю навчання: на рiвнi стандарту, академiчному або профільному рівні.

Навчальний матеріал курсу фізики в основній школі та час на його вивчення розподілено таким чином:

Клас

Кількість годин на тиждень

Перелік розділів

1

7

2 год

«Фізика як природнича наука. Пізнання природи», «Механічний рух», «Взаємодія тіл. Сила», «Механічна робота та енергія»

2

8

2 год

«Теплові явища», «Електричні явища. Електричний струм»

3

9

3 / 2,5 год

«Магнітні явища», «Світлові явища», «Механічні та електромагнітні хвилі», «Фізика атома та атомного ядра. Фізичні основи атомної енергетики», «Рух і взаємодія. Закони збереження»

 

Оновлення навчальної програми для 7-9 класів загальноосвітніх навчальних закладів

             В ході оновлення програми змінено структуру і наповнення пояснювальної записки. Визначено завдання предмета у досягненні мети базової загальної освіти, спрогнозовано портрет випускника основної школи. Тим самим змінено акценти  у навчанні – від суто предметного до цілісного й системного здобуття базової освіти  учнем як основним суб’єктом навчально-пізнавальної діяльності.

             Удосконалено застосування компетентнісного підходу до навчання фізики. Зважаючи на те, що кожен навчальний предмет окрім формування предметних компетентностей вносить свій внесок у формуванні ключових, у пояснювальній записці упорядковано таблицю в якій кожну ключову компетентність скорельовано з предметним змістом і навчальними ресурсами для її формування. 

             Визначено особливості запровадження наскрізних змістовних ліній «Екологічна безпека та сталий розвиток», «Громадянська відповідальність», «Здоров'я і безпека», «Підприємливість та фінансова грамотність», які відображають провідні соціально й особистісно значущі ідеї, що послідовно розкриваються у процесі навчання й виховання. Наскрізні змістові лінії   є засобом інтеграції навчального змісту, оскільки вони спільні для всіх навчальних предметів, і корелюються з ключовими компетентностями.  Впровадження наскрізних ліній на уроках фізики забезпечує формування ціннісних і світоглядних орієнтацій учня, що   визначають його поведінку в  життєвих ситуаціях. Реалізація цих ліній забезпечується під час розв’язування практико-орієнтованих задач, ситуативних вправ, проектної діяльності тощо.

             Головним у оновленні програм є те, що на перше місце в структурі програми поставлено очікувані результати навчально-пізнавальної діяльності учня. За такого підходу чітко видно, якими компетентностями має оволодіти школяр при вивченні теми. Змістова частина програми в даному разі стає похідною результативної частини. Така структура  концентрує увагу не на змісті матеріалу: «що вивчати», а на тому «для чого це потрібно вивчати»,  що по суті і є основою компетентнісного підходу. У навчальній програмі прописані ключові компетентності і складники предметної компетентності, якими має оволодіти учень і під ці компетентності організується навчально-пізнавальна діяльність учнів.

 «Очікувані результати навчально-пізнавальної діяльності учнів»  структуровано за трьома компонентами компетентності: знаннєвим, діяльнісним і ціннісним.

Виявлення сформованості знаннєвого компонента компетентності можливе через уміння оперувати термінами та поняттями; формулювати визначення понять; називати ті чи інші явища, процеси тощо; характеризувати їх за певними ознаками; пояснювати механізми процесів тощо.

Сформованість діяльнісного компонента тісно поєднана з виконанням практичної частини програми навчальної програми і в результатах навчання відображена в уміннях розв’язувати фізичні задачі, виконувати експериментальні дослідження тощо.

Прояв ціннісного компонента виражений через ставлення учнів у  висловлених  судженнях, обґрунтуванні їх,  оцінці,  висновках.

Експериментальну частину програми осучаснено завдяки рекомендаціям щодо використання цифрових вимірювальних комплексів, застосування комп’ютерних програм для обробки результатів тощо.

Надано більшу свободу вчителю щодо вибору тем і форм виконання навчальних проектів, лабораторних робіт. Зазначений у навчальній програмі розподіл годин між розділами є орієнтовним. За необхідності, і виходячи з наявних умов навчально-методичного забезпечення, учитель має право самостійно змінювати обсяг годин, відведених програмою на вивчення окремого розділу, в тому числі змінювати порядок вивчення розділів.

Під час оновлення програм здійснено перегляд змісту з метою його розвантаження чи уточнення, усунення зайвої деталізації фактичного матеріалу, уточнення формулювань, загального редагування тексту.

7 клас. Розділ 1. «Вступ». Вилучено такі питання: «Спостереження, експеримент. Зв'язок фізики з іншими науками. Молекули. Атоми. Електрони. Йони. Властивості тіл. Засоби вимірювання. Точність вимірювання. Історичний характер фізичного знання. Внесок українських учених у розвиток і становлення фізики.» У демонстраціях вилучено  «Міри та  прилади».

Розділ 2. «Механічний рух»   додано поняття «Частота коливань». У демонстраціях вилучено «Спідометр».

Розділі 3. «Взаємодія тіл. Сила» уточнено назву  лабораторної  роботи
№ 6. «Вимірювання маси тіл».

Розділ 4. «Механічна робота та енергія» уточнено уміння застосовувати формули потенціальної енергії  - тіла, піднятого над поверхнею Землі, та деформованого тіла.

8 клас. Розділ 1. «Теплові явища» «Шкала Цельсія» замінено на «Температурна шкала». Вилучено «Наноматеріали», «Тепловий баланс».

9 клас. Розділ 1. «Магнітні явища» більш логічно розташовано змістові питання. Додано поняття магнітної левітації.

Розділ 2. «Світлові явища» вилучено питання «джерела й приймачі світла», «світловий пучок», «дисперсія світла». Питання «Спектральний склад природного світла. Кольори» замінено на «Розкладання білого світла на кольори. Утворення кольорів».

У демонстраціях додано «Розкладання білого світла за допомогою призми».

Розділ 3. «Механічні та електромагнітні хвилі» додано лабораторну роботу № 6 Дослідження звукових коливань різноманітних джерел звуку за допомогою сучасних цифрових засобів.

Розділ 4. «Фізика атома та атомного ядра. Фізичні основи атомної енергетики» замінено «Активність радіоактивної речовини» на «Період піврозпаду радіонукліда».

Розділ 5. «Рух і взаємодія. Закони збереження» уточнено види рухів «(у вертикальному та горизонтальному напрямках і по похилій площині).» Видалено «Розвиток уявлень про природу світла.» Додано перелік демонстрацій.

Головним завданням основного курсу фізики в 7-9 класах є сформованість цілісних уявлень про фізичні явища і пропедевтика фізики як науки. Цим обумовлено вивчення в кінці базового курсу фізики (9 клас) розділу «Рух і взаємодія. Закони збереження», у якому акцентується увага на універсальному характері та фундаментальності законів збереження в природі та цілісності фізичної картини світу. На прикладі класичної механіки формується уміння оцінювати межі застосування фізичних законів і теорій. У старшій школі буде логічне продовження вивчення механіки.

 

Урахування ключових змін оновлення програм для основної школи у класах з поглибленим вивченням фізики.

Не зважаючи на те, що офіційно до навчальних програм для поглибленого вивчення фізики у 8-9 класах  зміни не вносились, учителі фізики можуть керуватися такими рекомендаціями, що відображають ключові зміни в оновленні навчальних програм з фізики для загальноосвітніх навчальних закладів:

1.     На уроках фізики має відбуватися формування не лише суто предметних, а й ключових компетентностей. Тому таблиця з описом внеску предмета у формуванні ключових компетентностей, що розміщена у пояснювальній записці програми з фізики для звичайних класів має бути врахована при плануванні й проведенні уроків у класах з поглибленим навчанням.

2.     Із програми основної школи варто взяти до уваги вказівки щодо реалізації наскрізних змістових ліній, які полягають в тому, щоб на уроках більше використовувати ситуативні завдання і вправи, які описують проблеми реального життя і для розв’язання яких дітям потрібно застосовувати здобутті знання. Має бути сбалансованим співвідношення задач з абстрактним і прикладним змістом.

3.     Вважати зазначений у навчальній програмі для поглибленого навчання розподіл годин між розділами орієнтовним. За необхідності й виходячи з наявних умов навчально-методичного забезпечення, учитель має право самостійно змінювати обсяг годин, відведених програмою на вивчення окремого розділу, в тому числі змінювати порядок вивчення питань розділу і самих розділів.

4.     Виходячи з педагогічної доцільності та залежно від умов і наявної матеріальної бази кабінету фізики вчитель може визначати конкретну  тематику лабораторних робіт, форму їх реалізації, послідовність й місце у навчальному процесі, кількість годин на їх виконання, замінювати окремі роботи або демонстраційні досліди рівноцінними, використовувати різні їхні можливі варіанти, доповнювати цей перелік додатковими дослідами, короткочасними експериментальними завданнями. Такі ж рекомендації застосовні і до організації й проведення навчальних проектів. 

Ефективним засобом формування предметної й ключових компетентностей учнів у процесі навчання фізики є навчальні проекти.

Теми й види навчальних проектів, форми їх представлення учні обирають самостійно або разом із учителем. Метою навчального проектування є створення педагогом таких умов під час освітнього процесу, за яких результатом є індивідуальний досвід проектної діяльності учня. Учитель здійснює управління цією діяльністю, допомагає у визначенні теми, мети та завдань навчального проекту, орієнтовних прийомів дослідницької діяльності та пошуку інформації для розв’язання окремих навчально-пізнавальних задач.

Під час виконання навчальних проектів вирішується ціла низка різнорівневих дидактичних, виховних і розвивальних завдань: розвиваються пізнавальні навички учнів, формується вміння самостійно орієнтуватися в інформаційному просторі, висловлювати власні судження, виявляти компетентність. У проектній діяльності важливо зацікавити учнів здобуттям знань і навичок, які знадобляться в житті. Для цього необхідно зважати на проблеми реального життя, для розв’язання яких учням потрібно застосовувати здобутті знання.

Оскільки виконання навчальних проектів передбачає інтегровану дослідницьку, творчу діяльність учнів, спрямовану на отримання самостійних результатів за консультативної допомоги вчителя, то найвищої оцінки за такі види роботи може заслуговувати учень, що не лише виявляє знання, а й демонструє здатність і досвід ефективного застосування цих знань у запропонованій йому штучній ситуації. Окрім оцінювання продукту проектної діяльності, необхідно відстежити і його психолого-педагогічний ефект: формування особистісних якостей, самооцінки, уміння робити усвідомлений вибір й осмислювати його наслідки.

Упродовж року учень обов’язково виконує один навчальний проект (індивідуальний або груповий). Окрім цього, учні можуть брати участь і виконувати за бажанням кілька проектів.

Проектна робота може бути теоретичною або експериментальною. Тривалість проекту – різна: від уроку (міні-проект), кількох днів (короткотерміновий проект) до року (довготерміновий). Результати досліджень учні представляють у формі мультимедійної презентації, доповіді (у разі необхідності – з демонстрацією дослідів), моделі, колекції, буклету, газети, статистичного звіту, тематичного масового заходу, дебатів тощо. Презентація й обговорення (захист) проектів відбувається на спеціально відведеному уроці або під час уроку з певної теми. Робота кожного виконавця проекту оцінюється за його внеском, індивідуально за критеріями, з якими учнів ознайомлюють заздалегідь.

У зв’язку з цим оцінки за навчальні проекти виконують стимулюючу функцію, можуть фіксуватися в портфоліо і враховуються при виведенні тематичної оцінки. Враховуючи, що виконання деяких навчальних проектів передбачає інтеграцію знань і  носить міжпредметний характер, то за рішенням методичного об’єднання учителів природничих предметів, оцінки за виконання таких робіт можуть виставлятись одночасно з цих предметів, або залежно від змістового розподілу і розподілу виконавців проекту: до прикладу: одним учням за біологічну складову, іншим – за фізичну). 

 У цілому щодо оцінювання навчальних досягнень учнів, то учитель у своїй діяльності керується орієнтовними вимогами оцінювання навчальних досягнень учнів із базових дисципліну системі загальної середньої освіти, затвердженими наказом Міністерства  освіти і науки України № 1222 від 21 серпня 2013 року. При цьому слід враховувати, що упровадження компетентнісного підходу зумовлює переосмислення технологій контролю й оцінювання:  з оцінювання предметних знань, умінь і навичок до оцінювання компетентностей – готовності і здатності учнів застосовувати здобуті знання і сформовані навички у своїй практичній діяльності.

Як відомо, шкільний фізичний експеримент як органічна складова методичної системи навчання фізики забезпечує формування в учнів необхідних практичних умінь, дослідницьких навичок та особистісного досвіду експериментальної діяльності, завдяки яким вони стають спроможними у межах набутих знань розв’язувати пізнавальні завдання засобами фізичного експерименту. У шкільному навчанні він реалізується у формі демонстраційного і фронтального експерименту, лабораторних робіт, фізичного практикуму, дослідницьких навчальних проектів, домашніх дослідів і спостережень тощо.

Перелічені в програмі демонстраційні досліди й лабораторні роботи є необхідними й достатніми щодо вимог Державного стандарту базової і повної загальної середньої освіти. Проте залежно від умов і наявної матеріальної бази фізичного кабінету вчитель може замінювати окремі роботи або демонстраційні досліди рівноцінними, використовувати різні їхні можливі варіанти. Учитель може доповнювати цей перелік додатковими дослідами, короткочасними експериментальними завданнями, об’єднувати кілька робіт в одну залежно від обраного плану уроку.

Окремі лабораторні роботи можна виконувати вдома або як учнівські навчальні проекти, а також за умови відсутності обладнання за допомогою комп’ютерних віртуальних лабораторій. Разом з тим, модельний віртуальний експеримент має поєднуватися з реальними фізичними дослідами й не заміщувати їх.

Самостійне експериментування учнів, особливо в основній школі, необхідно розширювати позаурочними експериментами та спостереженнями, використовуючи найпростіше устаткування, інколи навіть саморобні або побутові прилади, дотримуючись правил безпеки життєдіяльності.

Залежно від виду, призначення та рівня складності лабораторної роботи окремі з них учитель може не оцінювати.

Оцінювання рівня оволодіння учнем узагальненими експериментальними уміннями та навичками здійснюється не лише за результатами виконання фронтальних лабораторних робіт, а й за іншими видами експериментальної діяльності (експериментальні завдання, домашні досліди й спостереження, навчальні проекти, конструювання, моделювання тощо), що дають змогу їх виявити. Тому якщо учень був відсутній на уроці, на якому виконувалась фронтальна лабораторна робота, відпрацьовувати її в позаурочний час не обов’язково. Головне, щоб упродовж вивчення розділу учень проявив свої експериментальні уміння й навички в інших видах роботи.

З урахуванням реалізації програми поповнення матеріальної бази кабінетів природничого циклу в частину навчальних закладів почали надходити нові сучасні навчальні засоби, як то цифрові вимірювальні комплекси, цифрові мікроскопи та ін. Нові навчальні засоби надходять в школи за умови їх методичної підтримки у вигляді електронних методичних посібників, які включені до поставок та безкоштовного навчання учителів їх використанню. Ці елементи, які наявні в більшості шкіл світу потребують уваги з боку вчителя, як інноваційні інструменти для додаткової мотивації учнів до здійснення дослідницької діяльності на формування вмінь опрацьовувати отриману інформацію у вигляді графіків та таблиць. Зазначені засоби дають можливість доповнити більшість шкільних демонстрацій аналітичним матеріалом та удосконалити їх методику використання. Активне використання зазначених засобів учнями під час проведення лабораторних робіт дозволяє значно економити час, затрачений на проведення робіт та підвищує точність більшості вимірів. Більшість новітніх засобів навчання мають підтримку у вигляді безкоштовного поновлення програмного забезпечення та додаткової можливості для учителя та учня розміщувати власні розробки у мережі для сумісного використання іншими користувачами. Наявність цих засобів надає можливість застосовувати технології STEM орієнтованої освіти, тобто навчання через власні дослідження учнів. Особливістю зазначеної технології є формування уміння учня використовувати набуті знання не тільки у галузі фізики а й у інших споріднених предметах, що є необхідним фактором для формування важливих життєвих компетентностей. Оскільки пріоритетним напрямком набуття необхідних компетентностей як учнем так і учителем є уміння знайти потрібну інформацію, її опрацювати та зробити вірний висновок, використання мережних ресурсів є необхідним елементом сучасного уроку. Для підтримки напрямку навчальних досліджень учнів створено окремий україномовний ресурс Міжпредметного лабораторного комплексу Національного центру «Мала академія наук України» «МАНЛаб» http://manlab.inhost.com.ua. Ресурс містить значну кількість методичних розробок, відеозаписів експериментів, лекцій та пропозицій для співпраці  у плані безкоштовної допомоги по здійсненню учнівських досліджень.